Atlantis Online
April 19, 2024, 01:35:42 am
Welcome, Guest. Please login or register.

Login with username, password and session length
News: Hunt for Lost City of Atlantis
http://news.bbc.co.uk/1/hi/world/europe/3227295.stm
 
  Home Help Arcade Gallery Links Staff List Calendar Login Register  

Dark Matter

Pages: [1]   Go Down
  Print  
Author Topic: Dark Matter  (Read 175 times)
0 Members and 71 Guests are viewing this topic.
Vanessa Korias
Full Member
***
Posts: 19



« on: April 10, 2007, 12:32:41 am »

Observational evidence

The first to provide evidence and infer the existence of a phenomenon that has come to be called "dark matter" was Swiss astrophysicist Fritz Zwicky, of the California Institute of Technology (Caltech) in 1933.[5] He applied the virial theorem to the Coma cluster of galaxies and obtained evidence of unseen mass. Zwicky estimated the cluster's total mass based on the motions of galaxies near its edge. When he compared this mass estimate to one based on the number of galaxies and total brightness of the cluster, he found that there was about 400 times more mass than expected. The gravity of the visible galaxies in the cluster would be far too small for such fast orbits, so something extra was required. This is known as the "missing mass problem". Based on these conclusions, Zwicky inferred that there must be some non-visible form of matter which would provide enough of the mass and gravity to hold the cluster together.

 
Composite image of the Bullet cluster shows distribution of ordinary matter, inferred from X-ray emissions, in red and total mass, inferred from gravitational lensing, in blueMuch of the evidence for dark matter comes from the study of the motions of galaxies. Many of these appear to be fairly uniform, so by the virial theorem the total kinetic energy should be half the total gravitational binding energy of the galaxies. Experimentally, however, the total kinetic energy is found to be much greater: in particular, assuming the gravitational mass is due to only the visible matter of the galaxy, stars far from the center of galaxies have much higher velocities than predicted by the virial theorem. Galactic rotation curves, which illustrate the velocity of rotation versus the distance from the galactic center, cannot be explained by only the visible matter. Assuming that the visible material makes up only a small part of the cluster is the most straightforward way of accounting for this. Galaxies show signs of being composed largely of a roughly spherical halo of dark matter with the visible matter concentrated in a disc at the center. Low surface brightness dwarf galaxies are important sources of information for studying dark matter, as they have an uncommonly low ratio of visible matter to dark matter, and have few bright stars at the center which impair observations of the rotation curve of outlying stars.

According to results published in August 2006, dark matter has been observed separate from ordinary matter[6][7] through measurements of the Bullet Cluster, actually two nearby clusters of galaxies that collided about 150 million years ago.[8] Researchers analyzed the effects of gravitational lensing to determine total mass distribution in the pair and compared that to X-ray maps of hot gases, thought to constitute the large majority of ordinary matter in the clusters. The hot gases interacted during the collision and remain closer to the center. The individual galaxies and the dark matter did not interact and are farther from the center.

Report Spam   Logged


Pages: [1]   Go Up
  Print  
 
Jump to:  

Powered by EzPortal
Bookmark this site! | Upgrade This Forum
SMF For Free - Create your own Forum
Powered by SMF | SMF © 2016, Simple Machines
Privacy Policy