Atlantis Online
October 20, 2019, 02:08:22 am
Welcome, Guest. Please login or register.

Login with username, password and session length
News: Were seafarers living here 16,000 years ago?
http://www.canada.com/victoriatimescolonist/news/story.html?id=34805893-6a53-46f5-a864-a96d53991051&k=39922
 
  Home Help Arcade Gallery Links Staff List Calendar Login Register  

Did Easter Islanders sail to South America ?

Pages: [1]   Go Down
  Print  
Author Topic: Did Easter Islanders sail to South America ?  (Read 146 times)
Twilight of the Gods
Superhero Member
******
Posts: 3223



« on: October 15, 2017, 12:12:22 am »

Did Easter Islanders sail to South America ?
Posted on Friday, 13 October, 2017




Did the Easter Islanders have contact with Native Americans ? Image Credit: CC BY 2.5 Honey Hooper
A new study has cast doubt on the idea that the island's inhabitants had contact with Native Americans.
A small land mass of only 60 square miles, Easter Island has remained something of an enigma for years. Its army of strange stone statues and the fate of its original inhabitants are mysteries that continue to draw both intrigue and puzzlement.

More recently, scientists have put forward the idea that the Easter Islanders may have actually travelled to South America across 1,200 miles of open ocean and made contact with the Native American people long before the first Europeans had arrived on the continent.

In 2014, a genetic study seemed to indicate that the island's modern inhabitants had inherited around 8% of their DNA from Native Americans, but now a second study, which involved sequencing the genomes of the original inhabitants of the island before and after European contact, showed no evidence of Native American ancestry whatsoever.

"We were really surprised we didn't find anything," said anthropologist Lars Fehren-Schmitz. "There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics."


http://www.sciencemag.org/news/2017/10/did-early-easter-islanders-sail-south-america-europeans
Report Spam   Logged

Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #1 on: October 15, 2017, 12:23:34 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #2 on: October 15, 2017, 12:23:46 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #3 on: October 15, 2017, 12:24:35 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #4 on: October 15, 2017, 12:24:48 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #5 on: October 15, 2017, 12:24:56 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #6 on: October 15, 2017, 12:24:58 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Twilight of the Gods
Superhero Member
******
Posts: 3223



« Reply #7 on: October 15, 2017, 12:24:59 am »

Paleogenomic analysis sheds light on Easter Island mysteries
Research appears to rule out pre-European contact with South Americans

Date:
    October 12, 2017
Source:
    University of California - Santa Cruz
Summary:
    New paleogenomic research appears to rule out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.
Share:

FULL STORY
Rapa Nui National Park on Easter Island.
Credit: © Bryan Busovicki / Fotolia

Easter Island is a place of mystery that has captured the public imagination. Famous for ancient carved statues and a location so remote it boggles the mind, the island presents a captivating puzzle for researchers eager to understand how and when it became inhabited, and by whom.
advertisement

New paleogenomic research conducted by an international team led by UC Santa Cruz sheds light on those questions by ruling out the likelihood that inhabitants of Easter Island intermixed with South Americans prior to the arrival of Europeans on the island in 1722.

Lars Fehren-Schmitz, associate professor of anthropology at UC Santa Cruz, presents his findings in a new paper published in the Oct. 12 edition of Current Biology.

The team analyzed bone fragments from the ancient skeletal remains of five individuals that were excavated in the 1980s and became part of the Kon-Tiki Museum's collection in Oslo. Each sample, which had been used in a previous study, yielded less than 200 milligrams of material. Three individuals lived prior to European contact, and two lived after.

"We found no evidence of gene flow between the inhabitants of Easter Island and South America," said Fehren-Schmitz. "We were really surprised we didn't find anything. There's a lot of evidence that seems plausible, so we were convinced we would find direct evidence of pre-European contact with South America, but it wasn't there."

Questions surrounding Pacific islanders' contact with South Americans are hotly debated among anthropologists. An earlier study found genetic traces of early inhabitants of the Americas in present-day indigenous residents of Easter Island. Those researchers posited that the intermixing most likely occurred between 1280 and 1425. Fehren-Schmitz was the first to use paleogenomic analysis to directly test that hypothesis; his findings indicate that contact must have taken place after 1722.
advertisement

Slavery, whaling, mass deportations, and other activities that followed European contact gave rise to opportunities for intermixing that likely left the genetic imprint seen in islanders today, he said.

"The most likely scenario is that there wasn't a single episode," said Fehren-Schmitz. Acknowledging that his results answer one question but leave many others unanswered, he said, "The story is simply more complicated than we expected."

A member of the UC Santa Cruz Paleogenomics Laboratory, Fehren-Schmitz uses DNA sequences recovered from preserved biological remains to trace molecular evolutionary processes through time. The analysis of DNA from ancient humans sheds light on human evolution, researchers' understanding of how humans diverged and interacted over time, and how the forces of culture and biology have shaped human genetic diversity.

"This study highlights the value of ancient DNA to test hypotheses about past population dynamics," said Fehren-Schmitz. "We know the island's modern populations have some Native American ancestry, and now we know that early inhabitants did not. So the big questions remain: Where and when did these groups interact to change the genetic signature of Easter Islanders?"

One of the mysteries of Easter Island -- also called Rapa Nui -- is how the island came to be populated. Located nearly 1,300 miles from the nearest inhabited island, it is 2,200 miles from central Chile on the nearest continent of South America. Some archaeologists have suggested that sea travel between Polynesia and the Americas was plausible, leading to the intermingling of those populations and perhaps even the peopling of the Americas. But plausibility isn't proof, noted Fehren-Schmitz.
advertisement

"We want to do more work to determine more precisely when this gene flow between Native Americans and the people of Rapa Nui occurred, and where in the Americas it originated," he said. "The population dynamics of these regions are fascinating. We need to study the ancient populations of other islands -- if remains exist."

This project also demonstrates the value of using recently developed research methods on materials from older museum collections. Tropical conditions make preservation difficult, and rib fragments are generally too soft to be desirable, but recent technological advances opened up new possibilities, said Fehren-Schmitz.

"Our methodologies have evolved so much in the last five years that we might need to re-study samples we gave up on in the past to see if we can get DNA out of them," he added.

Co-authors on the paper include Catrine Jarman and Kelly Harkins at UC Santa Cruz, Manfred Kayser at University Medical Center Rotterdam, Brian Popp at University of Hawaii, and Pontus Skoglund at Harvard Medical School.
advertisement

Story Source:

Materials provided by University of California - Santa Cruz. Original written by Jennifer McNulty. Note: Content may be edited for style and length.

Journal Reference:

    Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund, Lars Fehren-Schmitz, Catrine L. Jarman, Kelly M. Harkins, Manfred Kayser, Brian N. Popp, Pontus Skoglund. Genetic Ancestry of Rapanui before and after European Contact. Current Biology, 2017 DOI: 10.1016/j.cub.2017.09.029

Report Spam   Logged
Pages: [1]   Go Up
  Print  
 
Jump to:  

Powered by EzPortal
Bookmark this site! | Upgrade This Forum
SMF For Free - Create your own Forum
Powered by SMF | SMF © 2016, Simple Machines
Privacy Policy