Atlantis Online
May 24, 2022, 06:55:04 am
Welcome, Guest. Please login or register.

Login with username, password and session length
News: 'Europe's oldest city' found in Cadiz
http://mathaba.net/rss/?x=566660
 
  Home Help Arcade Gallery Links Staff List Calendar Login Register  

Ancient Soil Replenishment Technique Helps In Battle Against Global Warming

Pages: [1]   Go Down
  Print  
Author Topic: Ancient Soil Replenishment Technique Helps In Battle Against Global Warming  (Read 150 times)
Bianca
Superhero Member
******
Posts: 41646



« on: December 20, 2008, 10:34:28 am »



Carbon cycling.

(Credit:
Image courtesy of
University of Georgia)








                           Ancient Soil Replenishment Technique Helps In Battle Against Global Warming






ScienceDaily
(Dec. 20, 2008)

— Former inhabitants of the Amazon Basin enriched their fields with charred organic materials-biochar-and transformed one of the earth's most infertile soils into one of the most productive. These early conservationists disappeared 500 years ago, but centuries later, their soil is still rich in organic matter and nutrients.

Now, scientists, environmental groups and policymakers forging the next world climate agreement see biochar not only as an important tool for replenishing soils, but as a powerful tool for combating global warming.

Christoph Steiner, a University of Georgia research scientist in the Faculty of Engineering, was a major contributor to the biochar proposal that was submitted by the United Nations Convention to Combat Desertification last week at the United Nations Climate Change Conference meeting in Poland. The new climate change agreement will replace the Kyoto Protocol, which expires in 2012.

"The potential of biochar lies in its ability to sequester-capture and store-huge amounts of carbon while also displacing fossil fuel energy, effectively doubling its carbon impact," said Steiner, a soil scientist whose research in the Amazon Basin originally focused on the use of biochar as a soil amendment. At UGA's Biorefinery and Carbon Cycling Program, he now investigates the global potential of biochar to sequester carbon. He also serves as a consultant to the UNCCD, a sister program to the climate change convention.

Steiner explained that almost any kind of organic material-peanut shells, pine chips and even poultry litter-can be burned in air-tight conditions, a process called pyrolysis. The byproducts are biochar, a highly porous charcoal that helps soil retain nutrients and water, and gases and heat that can be used as energy.
« Last Edit: December 20, 2008, 10:38:44 am by Bianca » Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.

Share on Facebook Share on Twitter

Bianca
Superhero Member
******
Posts: 41646



« Reply #1 on: December 20, 2008, 10:41:14 am »









But because the carbon in biochar so effectively resists degradation, it also can sequester carbon in soils for hundreds to thousands of years, effectively making it a permanent "sink"-a natural system that soaks up carbon dioxide from the atmosphere. Soils containing biochar made by ancient Amazon people still contain up to 70 times more carbon than surrounding soils and have a higher nutrient content. Steiner said scientists estimate biochar from agriculture and forestry residues can potentially sequester billions of tons of carbon in the world's soils.

Biochar also avoids the disadvantages of other bioenergy technologies that deplete soil organic matter, said Steiner.

"Removing crop residues for bioenergy production reduces the organic matter accumulating on agricultural fields and thus the soil organic carbon pool, which depends on constant input of decomposing plant material. In contrast, pyrolysis with biochar carbon sequestration produces renewable energy, sequesters CO2 and cycles nutrients back into agricultural fields."

This unique system ideally utilizes waste biomass, and thus does not compete with food production," said Steiner. Currently most waste biomass decomposes or is burned in the field. Both processes release carbon dioxide stored in the plant biomass-for no other use than getting rid of it. Biochar can capture up to 50 percent of the carbon stored in biomass and establishes a significant carbon sink, as long as renewable resources are used and biochar is used as a soil amendment.

To address our world's climate change dilemma, said Steiner, "We need a carbon sink in addition to greater energy efficiency and renewable energy. Acceptance of the UNCCD proposal in Poland is a first step to make carbon trading based on biochar a reality.

"This has not only consequences for mitigating climate change, but also for agricultural sustainability, and could provide a strong incentive to reduce deforestation, especially in the tropics."


--------------------------------------------------------------------------------

Adapted from materials provided by University of Georgia.
Email or share this story:   
Need to cite this story in your essay, paper, or report? Use one of the following formats:
 APA

 MLA University of Georgia (2008, December 20). Ancient Soil Replenishment Technique Helps In Battle Against Global Warming. ScienceDaily. Retrieved December 20, 2008, from



http://www.sciencedaily.com­ /releases/2008/12/081217190439.htm
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #2 on: December 20, 2008, 10:42:41 am »



When bioenergy is produced by pyrolysis (low-temperature burning without oxygen),
it produces biochar, which has twice as much carbon in its residue than that from
other sources.

This makes bioenergy carbon-negative and improves soil health.

(Credit:
Image courtesy of
Cornell University)








                                            Simpler Way To Counter Global Warming Explained:


                                Lock Up Carbon In Soil And Use Bioenergy Exhaust Gases For Energy






ScienceDaily
(May 12, 2007)

— Writing in the journal Nature, a Cornell biogeochemist describes an economical and efficient way to help offset global warming: Pull carbon dioxide out of the atmosphere by charring, or partially burning, trees, grasses or crop residues without the use of oxygen.

When bioenergy is produced by pyrolysis (low-temperature burning without oxygen), it produces biochar, which has twice as much carbon in its residue than that from other sources. This makes bioenergy carbon-negative and improves soil health.

This process, he writes, would double the carbon concentration in the residue, which could be returned to the soil as a carbon sink. The exhaust gases from this process and other biofuel production could then be converted into energy.

This so-called biochar sequestration could offset about 10 percent of the annual U.S. fossil-fuel emissions in any of several scenarios, says Johannes Lehmann, associate professor of soil biogeochemistry in the Department of Crop and Soil Sciences at Cornell.

"Biochar sequestration, combined with bioenergy production, does not require a fundamental scientific advance, and the underlying production technology is robust, clean and simple, making it appropriate for many regions of the world," said Lehmann. "It not only reduces emissions but also sequesters carbon, making it an attractive target for energy subsidies and for inclusion in the global carbon market."

Most plants pull carbon dioxide out of the atmosphere and lock it up in their biomass or in soil organic matter. But taking this a step further, Lehmann recommends heating the plant biomass without oxygen in a process known as low-temperature pyrolysis. When returned to the soil, biochar creates a stable, long-term carbon sink.

"Biochar also has been shown to improve the structure and fertility of soils, to enhance the retention and efficiency of fertilizers as well as to improve the productivity of soil," said Lehmann.

Capturing the exhaust gases from the pyrolysis process produces energy in such forms as heat, electricity, bio-oil or hydrogen. By adding the biochar to soil rather than burning it as an energy source (which most companies do), bioenergy can be turned into a carbon-negative industry. Biochar returned to soil not only secures soil health on bioenergy plantations but also reduces greenhouse gas emissions by an additional 12 to 84 percent.

Compared with ethanol production, pyrolysis that produces biochar and bioenergy from its exhaust gases is much less expensive, Lehmann said, when the feedstock is animal waste, clean municipal waste or forest residues collected for fire prevention.

Lehmann said that as the value of carbon dioxide increases on carbon markets, "we calculate that biochar sequestration in conjunction with bioenergy from pyrolysis becomes economically attractive when the value of avoided carbon dioxide emissions reaches $37 per ton." Currently, the Chicago Climate Exchange is trading carbon dioxide at $4 a ton; it is projected that that the price will rise to $25-$85 a ton in the coming years.


--------------------------------------------------------------------------------

Adapted from materials provided by Cornell University.
Email or share this story:   
Need to cite this story in your essay, paper, or report? Use one of the following formats:
 APA

 MLA Cornell University (2007, May 12). Simpler Way To Counter Global Warming Explained: Lock Up Carbon In Soil And Use Bioenergy Exhaust Gases For Energy. ScienceDaily. Retrieved December 20, 2008, from



http://www.sciencedaily.com­ /releases/2007/05/070511211255.htm
« Last Edit: December 20, 2008, 10:47:26 am by Bianca » Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #3 on: December 20, 2008, 10:50:18 am »



The raw materials involved in the production of biochar.

(Credit:
Courtesy of
Mingxin Guo)








            Ancient Method, 'Black Gold Agriculture' May Revolutionize Farming, Curb Global Warming






ScienceDaily
(Apr. 15, 2008)

—  Fifteen hundred years ago, tribes people from the central Amazon basin mixed their soil with charcoal derived from animal bone and tree bark. Today, at the site of this charcoal deposit, scientists have found some of the richest, most fertile soil in the world. Now this ancient, remarkably simple farming technique seems far ahead of the curve, holding promise as a carbon-negative strategy to rein in world hunger as well as greenhouse gases.

At the 235th national meeting of the American Chemical Society, scientists report that charcoal derived from heated biomass has an unprecedented ability to improve the fertility of soil -- one that surpasses compost, animal manure, and other well-known soil conditioners.

They also suggest that this so-called "biochar" profoundly enhances the natural carbon seizing ability of soil. Dubbed "black gold agriculture," scientists say this "revolutionary" farming technique can provide a cheap, straight-forward strategy to reduce greenhouse gases by trapping them in charcoal-laced soil.

"Charcoal fertilization can permanently increase soil organic matter content and improve soil quality, persisting in soil for hundreds to thousands of years," Mingxin Guo, Ph.D., and colleagues report. In what they describe as a "new and pioneering" ACS report -- the first systematic investigation of soil improvement by charcoal fertilization -- Guo found that soils receiving charcoal produced from organic wastes were much looser, absorbed significantly more water and nutrients and produced higher crop biomass. The authors, with Delaware State University, say "the results demonstrate that charcoal amendment is a revolutionary approach for long-term soil quality improvement."

Soil deterioration from depletion of organic matter is an increasingly serious global problem that contributes to hunger and malnutrition. Often a result of unsustainable farming, overuse of chemical fertilizers and drought, the main weapons to combat the problem --compost, animal manure and crop debris -- decompose rapidly.

"Earth's soil is the largest terrestrial pool of carbon," Guo said. "In other words, most of the earth's carbon is fixed in soil." But if this soil is intensively cultivated by tillage and chemical fertilization, organic matter in soil will be quickly decomposed into carbon dioxide by soil microbes and released into the atmosphere, leaving the soil compacted and nutrient-poor.
« Last Edit: December 20, 2008, 10:54:37 am by Bianca » Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #4 on: December 20, 2008, 10:55:49 am »









Applying raw organic materials to soil only provides a temporary solution, since the applied organic matter decomposes quickly. Converting this unutilized raw material into biochar, a non-toxic and stable fertilizer, could keep carbon in the soil and out of the atmosphere, says Guo.

"Speaking in terms of fertility and productivity, the soil quality will be improved. It is a long-term effect. After you apply it once, it will be there for hundreds of years," according to Guo. With its porous structure and high nutrient- and water-holding capabilities, biochar could become an extremely attractive option for commercial farmers and home gardeners looking for long-term soil improvement.

The researchers planted winter wheat in pots of soil in a greenhouse. Some pots were amended with two percent biochar, generated from readily available ingredients like tree leaves, corn stalk and wood chips. The other pots contained ordinary soil.

The biochar-infused soil showed vastly improved germination and growing rates compared to regular soil. Guo says that even a one-percent charcoal treatment would lead to improved crop yield.

Guo is "positive" that this ground-breaking farming technique can help feed countries with poor soil quality. "We hope this technology will be extended worldwide," says Guo.

"The production of current arable land could be significantly improved to provide more food and fiber for the growing populations. We want to call it the second agricultural revolution, or black gold revolution!"

He suggests that charcoal production has been practiced for at least 3000 years. But until now, nobody realized that this charcoal could improve soil fertility until archaeologists stumbled on the aforementioned Amazonian soil several years ago.

Biochar production is straightforward, involving a heating process known as pyrolysis. First, organic residue such as tree leaves and wood chips is packed into a metal container and sealed. Then, through a small hole on top, the container is heated and the material burns. The raw organic matter is transformed into black charcoal. Smokes generated during pyrolysis can also be collected and cooled down to form bio-oil, a renewable energy source, says Guo.

In lieu of patenting biochar, Guo says he is most interested in extending the technology into practice as soon as possible. To that end, his colleagues at Delaware State University are investigating a standardized production procedure for biochar. They also foresee long-term field studies are needed to validate and demonstrate the technology. Guo noted that downsides of biochar include transportation costs resulting from its bulk mass and a need to develop new tools to spread the granular fertilizer over large tracts of farmland.

The researchers are about to embark on a five-year study on the effect of "black gold" on spinach, green peppers, tomatoes and other crops. They seek the long-term effects of biochar fertilization on soil carbon changes, crop productivity and its effect of the soil microorganism community.

"Through this long-term work, we will show to people that biochar fertilization will significantly change our current conventional farming concepts," says Guo.


--------------------------------------------------------------------------------



Adapted from materials provided by American Chemical Society, via EurekAlert!, a service of AAAS.
Email or share this story:   
Need to cite this story in your essay, paper, or report? Use one of the following formats:
 APA

 MLA American Chemical Society (2008, April 15). Ancient Method, 'Black Gold Agriculture' May Revolutionize Farming, Curb Global Warming. ScienceDaily. Retrieved December 20, 2008, from



http://www.sciencedaily.com­ /releases/2008/04/080410153658.htm
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #5 on: December 20, 2008, 10:58:41 am »









                                    Limitations Of Charcoal As An Effective Carbon Sink






ScienceDaily
(May 4, 2008)

— Fire-derived charcoal is thought to be an important carbon sink. However, a SLU paper in Science shows that charcoal promotes soil microbes and causes a large loss
of soil carbon.

There has been greatly increasing attention given to the potential of ‘biochar’, or charcoal made from biological tissues (e.g., wood) to serve as a long term sink of carbon in the soil. This is because charcoal is carbon-rich and breaks down extremely slowly, persisting in soil for thousands of years. This has led to the suggestion being seriously considered by policy makers worldwide that biochar could be produced in large quantities and stored in soils. This would in turn increase ecosystem carbon sequestration, and thereby counteract human induced increases in carbon-based greenhouse gases and help combat global warming.

However, a new study by Professors David Wardle, Marie-Charlotte Nilsson and Olle Zackrisson at SLU, the Swedish University of Agricultural Sciences, in Umeĺ, scheduled to appear in this Friday’s issue of the prestigious journal Science, suggests that these supposed benefits of biochar may be somewhat overstated. In their study, charcoal was prepared and mixed with forest soil, and left in the soil in each of three contrasting forest stands in northern Sweden for ten years.

They found that when charcoal was mixed into humus, there was a substantial increase in soil microorganisms (bacteria and fungi). These microbes carry out decomposition of organic matter (carbon) in the soil, and consistent with this, they found that charcoal caused greatly increased losses of native soil organic matter, and soil carbon, for each of the three forest stands. Much of this lost soil carbon would be released as carbon dioxide, a greenhouse gas.

Therefore, while it is true that charcoal represents a long term sink of carbon because of its persistence, this effect is at least partially offset by the capacity of charcoal to greatly promote the loss of that carbon already present in the soil.

The study finds that the supposed benefits of biochar in increasing ecosystem carbon storage may be overstated, at least for boreal forest soils. The effect of biochar on the loss of carbon already in the soil needs to be better understood before it can be effectively applied as a tool to mitigate human-induced increases in carbon-based greenhouse gases.


--------------------------------------------------------------------------------



Adapted from materials provided by Swedish University of Agricultural Sciences.
Email or share this story:   
Need to cite this story in your essay, paper, or report? Use one of the following formats:
 APA

 MLA Swedish University of Agricultural Sciences (2008, May 4). Limitations Of Charcoal As An Effective Carbon Sink. ScienceDaily. Retrieved December 20, 2008, from



http://www.sciencedaily.com­ /releases/2008/05/080501180247.htm
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #6 on: December 20, 2008, 11:01:58 am »









                                               New Progress In Soil Ecology






ScienceDaily
(Nov. 6, 2008)

— Soil protection has become a priority of the European Union. The loss of organic matter is one of the various threats to the soils that have been identified by the European Commission. Agricultural soils as well as mountain soils are implicated; they are veritable carbon sinks, which, under the impact of climate warming, could become sources greenhouse gas emissions. Near-infrared spectroscopy is a very promising avenue able to quantify the build-up of carbon in the soils at a large scale.

The capacity of plants to store carbon dioxide emitted in the atmosphere via photosynthesis is well known. But did you know that soils are veritable natural carbon sinks? Consequently, forest soils contain the largest terrestrial reserves on the planet.

Carbon is stored there in a more or less sustainable fashion in the form of organic matter: microflora, soil wildlife, roots and plant debris, organic labile residue (sugars, cellulose) and more stable molecules (lignin, tannin, humines). However, in a context of climate warming, these carbon stocks decompose, emitting large amounts of carbon dioxide and methane, two greenhouse gases. At Cemagref, the aim of an ongoing doctoral thesis conducted in a partnership with ADEME is to develop a simple and cost-effective tool to quantify organic carbon storage in soils. Upstream, this work come within the future European Framework Directive on soil protection with one of the priorities being to make a list of the soils at risk in Europe
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #7 on: December 20, 2008, 11:03:17 am »










A global understanding of the process



In the mountains, the storage of organic carbon is favoured by the temperature and moisture conditions of the environment and by the characteristics of the litter. To study the impacts of these different parameters, Lauric Cécillon’s research was conducted on a cold scree in a mid-altitude mountain area, located in the Southern Alps. A true field laboratory, this ecosystem shows highly contrasted micro-climate soil conditions and plants (pine trees, beech groves and fir forest, and an ecotone zone) simulating the long-term impacts of climate warming over a distance of a few hundred metres.

This researcher first focused on the process controlling the build-up of organic matter in the soil. The decomposition process was studied by experiments with litter bags. The mass losses of these litter bags were measured over a lapse of time. The process of aggregation of the organic matter was monitored by the analysis of thin slices of soil and by the physico-chemical description of the particulate organic matter.
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #8 on: December 20, 2008, 11:04:46 am »









Towards mountain soil mapping



In addition, this researcher has developed a new method for predicting the organic and microbial carbon stocks which favourably replaces the chemical methods of analysis. This method, based on near-infrared spectrometry, was developed on burnt soils, within the European IRISE project, then applied on approximately 1000 samples of mountain soil. In just a few minutes, the amount of organic carbon, total nitrogen, and microbial carbon, the bacterial activities of de-nitrification and potential nitrification, as well as two enzymes of soil degradation can be determined. This quick and reliable tool makes it possible to analyze a large number of samples cheaply, a significant advantage in the highly heterogeneous mountain environments. The aim of the next thesis will be to map carbon storage and soil quality at the scale of a natural preserve area located in the High Plateaux of the Vercors range.
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #9 on: December 20, 2008, 11:06:11 am »









From burnt soils to mountain soils?

It is within the European project IRISE (Impact of Fire Repetition on the Environment) that Lauric Cécilion has developed the near-infrared spectrometry soil carbon measurement method. Like agricultural soils and mountain soils, burnt soils are threatened by a drop in their stock of organic matter. This tool can measure the impact of the repetition of the fires on the soil quality. The researcher has also shown that the spectrometric analysis of earthworm castings makes it possible to select the plots based on how long ago fires occurred. Finally, the technique made it possible to validate the positive action of earthworms on the build-up of organic carbon and nitrogen and the richness of the microbial flora in the soils after burning.


--------------------------------------------------------------------------------



Adapted from materials provided by Cemagref.
Email or share this story:   
Need to cite this story in your essay, paper, or report? Use one of the following formats:
 APA

 MLA Cemagref (2008, November 6). New Progress In Soil Ecology. ScienceDaily. Retrieved December 20, 2008, from



http://www.sciencedaily.com­ /releases/2008/11/081106065548.htm
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #10 on: December 20, 2008, 11:07:44 am »



Savanna fires occur almost every year in northern Australia,
leaving behind black carbon that remains in soil for thousands of years.

(Credit:
Grant Stone,
QCCCE)








                   Global Warming Predictions Are Overestimated, Suggests Study On Black Carbon







ScienceDaily
(Nov. 25, 2008)

— A detailed analysis of black carbon -- the residue of burned organic matter -- in computer climate models suggests that those models may be overestimating global warming predictions.

A new Cornell study, published online in Nature Geosciences, quantified the amount of black carbon in Australian soils and found that there was far more than expected, said Johannes Lehmann, the paper's lead author and a Cornell professor of biogeochemistry. The survey was the largest of black carbon ever published.

As a result of global warming, soils are expected to release more carbon dioxide, the major greenhouse gas, into the atmosphere, which, in turn, creates more warming. Climate models try to incorporate these increases of carbon dioxide from soils as the planet warms, but results vary greatly when realistic estimates of black carbon in soils are included in the predictions, the study found.

Soils include many forms of carbon, including organic carbon from leaf litter and vegetation and black carbon from the burning of organic matter. It takes a few years for organic carbon to decompose, as microbes eat it and convert it to carbon dioxide. But black carbon can take 1,000-2,000 years, on average, to convert to carbon dioxide.

By entering realistic estimates of stocks of black carbon in soil from two Australian savannas into a computer model that calculates carbon dioxide release from soil, the researchers found that carbon dioxide emissions from soils were reduced by about 20 percent over 100 years, as compared with simulations that did not take black carbon's long shelf life into account.

The findings are significant because soils are by far the world's largest source of carbon dioxide, producing 10 times more carbon dioxide each year than all the carbon dioxide emissions from human activities combined. Small changes in how carbon emissions from soils are estimated, therefore, can have a large impact.

"We know from measurements that climate change today is worse than people have predicted," said Lehmann. "But this particular aspect, black carbon's stability in soil, if incorporated in climate models, would actually decrease climate predictions."

The study quantified the amount of black carbon in 452 Australian soils across two savannas. Black carbon content varied widely, between zero and more than 80 percent, in soils across Australia.

"It's a mistake to look at soil as one blob of carbon," said Lehmann. "Rather, it has different chemical components with different characteristics. In this way, soil will interact differently to warming based on what's in it."


--------------------------------------------------------------------------------



Adapted from materials provided by Cornell University.
Email or share this story:   
Need to cite this story in your essay, paper, or report? Use one of the following formats:
 APA

 MLA Cornell University (2008, November 25). Global Warming Predictions Are Overestimated, Suggests Study On Black Carbon. ScienceDaily. Retrieved December 20, 2008, from http:



//www.sciencedaily.com­ /releases/2008/11/081119120155.htm
« Last Edit: December 20, 2008, 11:11:10 am by Bianca » Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Bianca
Superhero Member
******
Posts: 41646



« Reply #11 on: December 20, 2008, 11:16:05 am »







FOR ANCIENT ORIGINS OF TECHNIQUE:



http://atlantisonline.smfforfree2.com/index.php/topic,14368.0.html
Report Spam   Logged

Your mind understands what you have been taught; your heart what is true.
Pages: [1]   Go Up
  Print  
 
Jump to:  

Powered by EzPortal
Bookmark this site! | Upgrade This Forum
SMF For Free - Create your own Forum
Powered by SMF | SMF © 2016, Simple Machines
Privacy Policy